
CMake Python Distributions
Documentation

Release 3.27.5.post4.dev0+g4df2630

Jean-Christophe Fillion-Robin

Sep 20, 2023

USER GUIDE

1 Installation 3
1.1 Install package with pip . 3
1.2 Install from source . 3
1.3 Dependencies . 3

2 Usage 5

3 Building the CMake Python wheel 7
3.1 Overview . 7
3.2 Prerequisites . 7
3.3 Quick start . 7
3.4 Source distribution (sdist) . 7
3.5 Binary distribution (build, bdist, bdist_wheel) . 8
3.6 Default value for BUILD_CMAKE_FROM_SOURCE . 8
3.7 Controlling verbosity . 8
3.8 Optimizations . 9

4 Understanding the Build-system 11
4.1 CMakeLists.txt . 11

5 Contributing 15
5.1 Types of Contributions . 15
5.2 Get Started . 16
5.3 Pull Request Guidelines . 16
5.4 Tips . 17

6 Credits 19

7 History 21

8 Updating the CMake version 23
8.1 Nox procedure . 23
8.2 Classic procedure: . 23

9 Making a release 25
9.1 Prerequisites . 25
9.2 Documentation conventions . 25
9.3 PyPI: Step-by-step . 25

10 Indices and tables 27

i

11 Resources 29

ii

CMake Python Distributions Documentation, Release 3.27.5.post4.dev0+g4df2630

CMake is used to control the software compilation process using simple platform and compiler independent configura-
tion files, and generate native makefiles and workspaces that can be used in the compiler environment of your choice.

The suite of CMake tools were created by Kitware in response to the need for a powerful, cross-platform build envi-
ronment for open-source projects such as ITK and VTK.

The CMake python wheels provide CMake 3.27.5.

USER GUIDE 1

http://www.cmake.org
https://www.itk.org
http://www.vtk.org
https://cmake.org/cmake/help/v3.27/index.html

CMake Python Distributions Documentation, Release 3.27.5.post4.dev0+g4df2630

2 USER GUIDE

CHAPTER

ONE

INSTALLATION

1.1 Install package with pip

To install with pip:

$ pip install cmake

1.2 Install from source

See Building the CMake Python wheel

1.3 Dependencies

1.3.1 Python Packages

The development dependencies (for testing and coverage) are:

-r requirements-test.txt
-r requirements-repair.txt

3

CMake Python Distributions Documentation, Release 3.27.5.post4.dev0+g4df2630

4 Chapter 1. Installation

CHAPTER

TWO

USAGE

After installing the package using pip, the executables cmake, cpack and ctest will be available in the PATH and can
be used to configure and build any projects.

5

CMake Python Distributions Documentation, Release 3.27.5.post4.dev0+g4df2630

6 Chapter 2. Usage

CHAPTER

THREE

BUILDING THE CMAKE PYTHON WHEEL

3.1 Overview

This project has been designed to work with scikit-build.

It provides a setup.py and allows to create both source and binary distributions of CMake.

This is done ensuring source files and build artifacts are copied and/or generated in expected locations.

3.2 Prerequisites

In addition of Git, Python and CMake, building the wheel with BUILD_CMAKE_FROM_SOURCE set to ON also requires
a C++ Compiler.

3.3 Quick start

Build the CMake Python wheel with the following command:

mkvirtualenv build-cmake
pip install -r requirements-dev.txt
python setup.py bdist_wheel

3.4 Source distribution (sdist)

CMake sources will always be downloaded in the <ROOT>/src directory.

This will ensure that the rules specified in <ROOT>/MANIFEST.in can successfully glob the source files.

The source distribution is generated using the following command:

python setup.py sdist

7

http://scikit-build.readthedocs.io/
https://cmake.org

CMake Python Distributions Documentation, Release 3.27.5.post4.dev0+g4df2630

3.5 Binary distribution (build, bdist, bdist_wheel)

The project has two mode of operations:

1. build CMake from source (BUILD_CMAKE_FROM_SOURCE set to ON)

2. download CMake binaries (BUILD_CMAKE_FROM_SOURCE set to OFF)

The binary distribution is generated using the following command:

python setup.py bdist_wheel

Changing the default mode is achieved by explicitly passing the option to CMake:

python setup.py bdist_wheel -- -DBUILD_CMAKE_FROM_SOURCE:BOOL=ON

3.6 Default value for BUILD_CMAKE_FROM_SOURCE

Depending on the platform, option BUILD_CMAKE_FROM_SOURCE has different default:

• Linux: ON

• MacOSX: OFF

• Windows: OFF

3.7 Controlling verbosity

3.7.1 configure and build output

By default, the output associated to the configure and build steps of the CMakeProject-build external project are logged
into files. This can be changed by setting the BUILD_VERBOSE option:

python setup.py bdist_wheel -- -DBUILD_VERBOSE:BOOL=1

3.7.2 list of files copied into the distributions

By default, the complete list of files copied into the distributions are reported. This can be changed passing the
--hide-listing option:

python setup.py --hide-listing sdist
python setup.py --hide-listing bdist_wheel

8 Chapter 3. Building the CMake Python wheel

CMake Python Distributions Documentation, Release 3.27.5.post4.dev0+g4df2630

3.8 Optimizations

On a given platform, when building different “flavor” of CMake python wheels (one for each <python tag>-<abi>
tag), the whole process can be made faster in two ways.

3.8.1 Caching downloads

To avoid the re-download of CMake sources and/or binary packages, passing the option
-DCMakePythonDistributions_ARCHIVE_DOWNLOAD_DIR:PATH=/path/to/cache enables successive build
to re-use existing archives instead of re-downloading them.

3.8.2 Re-using build tree

And finally, on a given platform, to avoid rebuilding CMake, the idea is to first create a standalone build of the CMake
project and then building the wheel using it.

Step 1: Standalone build:

mkdir -p standalone-build && cd $_
cmake -DCMakePythonDistributions_ARCHIVE_DOWNLOAD_DIR:PATH=/path/to/cache -G Ninja ../

Step 2: Faster build reusing download and build directories:

python setup.py bdist_wheel -- \
-DCMakePythonDistributions_ARCHIVE_DOWNLOAD_DIR:PATH=/path/to/cache \
-DCMakeProject_BINARY_DIR:PATH=/path/to/standalone-build

3.8. Optimizations 9

CMake Python Distributions Documentation, Release 3.27.5.post4.dev0+g4df2630

10 Chapter 3. Building the CMake Python wheel

CHAPTER

FOUR

UNDERSTANDING THE BUILD-SYSTEM

4.1 CMakeLists.txt

The build system is described by the CMakeLists.txt and is composed of few projects each responsible for a specific
task. Once configured, the Outer Project is responsible for driving the overall build composed of multiple project
called external project. Here is the list of external project:

• CMakeProject-src-download

• CMakeProject-binary-download

• CMakeProject-build

• CMakePythonDistributions: This corresponds to the Inner Project represented below.

The flow chart represented below illustrates which external projects are included based on the configure options and
describes the role of each one:

11

CMake Python Distributions Documentation, Release 3.27.5.post4.dev0+g4df2630

12 Chapter 4. Understanding the Build-system

CMake Python Distributions Documentation, Release 3.27.5.post4.dev0+g4df2630

Name Description
CMakeLists See CMakeLists.txt
Download source ? If option CMakeProject_SOURCE_DIR is set, skip source download.
Download Source archive External project downloading archives from https://cmake.org/files/.
Re-use source directory Empty external project.
Build from Source ? Answer based on option BUILD_CMAKE_FROM_SOURCE
CMakeProject-binary-
download

External project downloading pre-built binary archives from https://cmake.org/
files/.

CMakeProject-build External project building CMake from source.
Strip executables If possible, reduce wheel size stripping cmake, cpack and ctest executables
Which files to install? Answer based on option BUILD_CMAKE_FROM_SOURCE
Install prebuilt binaries Recursively glob all files and explicitly add install rules.
Install CMake project Achieved by including ${CMakeProject_BINARY_DIR}/cmake_install.

cmake.

4.1. CMakeLists.txt 13

https://cmake.org/files/
https://cmake.org/files/
https://cmake.org/files/

CMake Python Distributions Documentation, Release 3.27.5.post4.dev0+g4df2630

14 Chapter 4. Understanding the Build-system

CHAPTER

FIVE

CONTRIBUTING

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

5.1 Types of Contributions

You can contribute in many ways:

5.1.1 Report Bugs

Report bugs at https://github.com/scikit-build/cmake-python-distributions/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

5.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

5.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

5.1.4 Write Documentation

The cmake-python-distributions project could always use more documentation. We welcome help with the official
cmake-python-distributions docs, in docstrings, or even on blog posts and articles for the web.

15

https://github.com/scikit-build/cmake-python-distributions/issues

CMake Python Distributions Documentation, Release 3.27.5.post4.dev0+g4df2630

5.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/scikit-build/cmake-python-distributions/issues.

If you are proposing a new feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

5.2 Get Started

Ready to contribute? Here’s how to set up cmake-python-distributions for local development.

1. Fork the cmake-python-distributions repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/cmake-python-distributions.git

3. Make sure you have nox installed (preferably use pipx or brew (macOS) if you have those):

$ pip install nox
$ cd cmake-python-distributions/

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass linters and the tests:

$ nox

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

5.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with
a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.7, and 3.6+. Check `GitHub Actions https://github.com/scikit-
build/cmake-python-distributions/actions/workflows/build.yml`_ and make sure that the tests pass for all sup-
ported Python versions.

16 Chapter 5. Contributing

https://github.com/scikit-build/cmake-python-distributions/issues

CMake Python Distributions Documentation, Release 3.27.5.post4.dev0+g4df2630

5.4 Tips

To run a subset of tests:

$ pytest tests/test_cmake.py
OR
$ nox -s tests -- tests/test_cmake.py

5.4. Tips 17

CMake Python Distributions Documentation, Release 3.27.5.post4.dev0+g4df2630

18 Chapter 5. Contributing

CHAPTER

SIX

CREDITS

Please see the GitHub project page at https://github.com/scikit-build/cmake-python-distributions/graphs/contributors

19

https://github.com/scikit-build/cmake-python-distributions/graphs/contributors

CMake Python Distributions Documentation, Release 3.27.5.post4.dev0+g4df2630

20 Chapter 6. Credits

CHAPTER

SEVEN

HISTORY

cmake-python-distributions was initially developed in September 2016 by Jean-Christophe Fillion-Robin to facilitate
the distribution of project using scikit-build and depending on CMake.

21

http://scikit-build.readthedocs.io/

CMake Python Distributions Documentation, Release 3.27.5.post4.dev0+g4df2630

22 Chapter 7. History

CHAPTER

EIGHT

UPDATING THE CMAKE VERSION

A developer should use the following steps to update the version X.Y.Z of CMake associated with the current CMake
python distributions.

Available CMake archives can be found at https://cmake.org/files.

8.1 Nox procedure

If using nox, run:

nox -s bump -- <version>

And follow the instructions it gives you. Leave off the version to bump to the latest version. Add –commit to run the
commit procedure.

8.2 Classic procedure:

1. Install requests:

$ pip install requests

2. Execute scripts/update_cmake_version.py command line tool with the desired X.Y.Z CMake version available
for download. For example:

$ release=3.27.5
$./scripts/update_cmake_version.py $release
Collecting URLs and SHA256s from 'https://api.github.com/repos/Kitware/CMake/
→˓releases/tags/v3.27.5'
[...]
Collecting URLs and SHA256s from 'https://api.github.com/repos/Kitware/CMake/
→˓releases/tags/v3.27.5' - done
Updating 'CMakeUrls.cmake' with CMake version 3.27.5
Updating 'CMakeUrls.cmake' with CMake version 3.27.5 - done
Updating docs/index.rst
Updating docs/index.rst - done
Updating README.rst
Updating README.rst - done
Updating tests/test_distribution.py
Updating tests/test_distribution.py - done

23

https://cmake.org/files

CMake Python Distributions Documentation, Release 3.27.5.post4.dev0+g4df2630

3. Create a topic named update-to-cmake-X.Y.Z and commit the changes. For example:

release=3.27.5
git switch -c update-to-cmake-$release
git add -u CMakeUrls.cmake docs/index.rst README.rst tests/test_distribution.py␣
→˓docs/update_cmake_version.rst
git commit -m "Update to CMake $release"

4. Push the topic and create a Pull Request.

5. If all CI tests are passing, merge the topic and consider making a new release.

24 Chapter 8. Updating the CMake version

CHAPTER

NINE

MAKING A RELEASE

A core developer should use the following steps to create a release X.Y.Z of cmake-python-distributions on PyPI.

This is usually done after Updating the CMake version.

9.1 Prerequisites

• All CI tests are passing on GitHub Actions.

• You have a GPG signing key.

9.2 Documentation conventions

The commands reported below should be evaluated in the same terminal session.

Commands to evaluate starts with a dollar sign. For example:

$ echo "Hello"
Hello

means that echo "Hello" should be copied and evaluated in the terminal.

9.3 PyPI: Step-by-step

1. Make sure that all CI tests are passing on GitHub Actions.

2. Download the latest sources

$ cd /tmp && \
git clone git@github.com:scikit-build/cmake-python-distributions cmake-

→˓python-distributions-release && \
cd cmake-python-distributions-release

3. List all tags sorted by version

$ git fetch --tags && \
git tag -l | sort -V

4. Choose the next release version number

25

https://pypi.org/project/cmake
https://github.com/scikit-build/cmake-python-distributions/actions/workflows/build.yml
https://help.github.com/articles/generating-a-new-gpg-key/
https://github.com/scikit-build/cmake-python-distributions/actions/workflows/build.yml

CMake Python Distributions Documentation, Release 3.27.5.post4.dev0+g4df2630

$ release=X.Y.Z

Warning: To ensure the packages are uploaded on PyPI, tags must match this regular expression:
^[0-9]+(\.[0-9]+)*(\.post[0-9]+)?$.

5. Tag the release

$ git tag --sign -m "cmake-python-distributions $release" $release master

Warning: We recommend using a GPG signing key to sign the tag.

6. Publish the release tag

$ git push origin $release

Note: This will trigger builds on each CI services and automatically upload the wheels and source distri-
bution on PyPI.

7. Check the status of the builds on GitHub Actions.

8. Once the builds are completed, check that the distributions are available on PyPI.

9. Make a GitHub release based on the tag. This will display the latest version in the GitHub sidebar, and will notify
release watchers of the release. Title it Version X.Y.Z and add a little note about what changed (Python only).

10. Create a clean testing environment to test the installation

$ pushd $(mktemp -d) && \
mkvirtualenv cmake-$release-install-test && \
pip install cmake && \
cmake --version

Note: If the mkvirtualenv command is not available, this means you do not have virtualenvwrapper
installed, in that case, you could either install it or directly use virtualenv or venv.

11. Cleanup

$ popd && \
deactivate && \
rm -rf dist/* && \
rmvirtualenv cmake-$release-install-test

26 Chapter 9. Making a release

https://pypi.org/project/cmake
https://help.github.com/articles/generating-a-new-gpg-key/
https://pypi.org/project/cmake
https://github.com/scikit-build/cmake-python-distributions/actions/workflows/build.yml
https://pypi.org/project/cmake
https://virtualenvwrapper.readthedocs.io/
http://virtualenv.readthedocs.io
https://docs.python.org/3/library/venv.html

CHAPTER

TEN

INDICES AND TABLES

• genindex

• modindex

• search

27

CMake Python Distributions Documentation, Release 3.27.5.post4.dev0+g4df2630

28 Chapter 10. Indices and tables

CHAPTER

ELEVEN

RESOURCES

This project is maintained by Jean-Christophe Fillion-Robin from Kitware Inc. It is covered by the Apache License,
Version 2.0.

CMake is distributed under the OSI-approved BSD 3-clause License. For more information about CMake, visit http:
//cmake.org

• Documentation: http://cmake-python-distributions.readthedocs.io/en/latest/

• Source code: https://github.com/scikit-build/cmake-python-distributions

• Mailing list: https://groups.google.com/forum/#!forum/scikit-build

29

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://cmake.org
http://cmake.org
http://cmake-python-distributions.readthedocs.io/en/latest/
https://github.com/scikit-build/cmake-python-distributions
https://groups.google.com/forum/#!forum/scikit-build

	Installation
	Install package with pip
	Install from source
	Dependencies
	Python Packages

	Usage
	Building the CMake Python wheel
	Overview
	Prerequisites
	Quick start
	Source distribution (sdist)
	Binary distribution (build, bdist, bdist_wheel)
	Default value for BUILD_CMAKE_FROM_SOURCE
	Controlling verbosity
	configure and build output
	list of files copied into the distributions

	Optimizations
	Caching downloads
	Re-using build tree

	Understanding the Build-system
	CMakeLists.txt

	Contributing
	Types of Contributions
	Report Bugs
	Fix Bugs
	Implement Features
	Write Documentation
	Submit Feedback

	Get Started
	Pull Request Guidelines
	Tips

	Credits
	History
	Updating the CMake version
	Nox procedure
	Classic procedure:

	Making a release
	Prerequisites
	Documentation conventions
	PyPI: Step-by-step

	Indices and tables
	Resources

